Spreading in a kinetic reaction-transport equation for population dynamics CCSAMM

Nils Caillerie

Georgetown University

September 20th 2017

collaboration with E. Bouin (U. Paris-Dauphine) work performed during my PhD at Université Lyon 1

Applications: Escherichia coli¹, Rhinella marina² (cane toad)

¹Calvez, Chemotatic waves of bactria et the mesoscale (2016).

²Brown, NC, Calvez, Phillips, Soubeyrand (work in progress) → ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩

Applications: Escherichia coli¹, Rhinella marina² (cane toad)

- Exponential time with mean 1
- ullet admissible velocity set: $V\subset \mathbb{R}^d$ (compact)

¹Calvez, Chemotatic waves of bactria et the mesoscale (2016).

²Brown, NC, Calvez, Phillips, Soubeyrand (work in progress)

Applications: Escherichia coli¹, Rhinella marina² (cane toad)

Run

- Exponential time with mean 1
- admissible velocity set: $V \subset \mathbb{R}^d$ (compact)

Tumble

velocity redistribution: $M \in L^1(V)$ such that $\int_{V} v M(v) dv = 0$

¹Calvez, Chemotatic waves of bactria et the mesoscale (2016).

²Brown, NC, Calvez, Phillips, Soubeyrand (work in progress)

Applications: Escherichia coli¹, Rhinella marina² (cane toad)

Run

- Exponential time with mean 1
- admissible velocity set: $V \subset \mathbb{R}^d$ (compact)

Tumble

• velocity redistribution: $M \in L^1(V)$ such that $\int_V vM(v)dv = 0$

+ Reproduction at rate r > 0 and intra-specific competition (KPP type)

¹Calvez, Chemotatic waves of bactria et the mesoscale (2016).

²Brown, NC, Calvez, Phillips, Soubeyrand (work in progress) → ⟨፮→ ⟨፮→ ⟨፮→ ⊘००

Applications: Escherichia coli¹, Rhinella marina² (cane toad)

- Exponential time with mean 1
 - ullet admissible velocity set: $V\subset \mathbb{R}^d$ (compact)

Tumble

- velocity redistribution: $M \in L^1(V)$ such that $\int_V vM(v)dv = 0$
- + Reproduction at rate r > 0 and intra-specific competition (KPP type)
- + homogeneous environment (No chemotactic effect !!!)

¹Calvez, Chemotatic waves of bactria et the mesoscale (2016).

²Brown, NC, Calvez, Phillips, Soubeyrand (work in progress).

Chapman-Kolmogorov equation:

$$\begin{split} \partial_t f + v \cdot \nabla_x f &= M(v)\rho - f + r\rho(M(v) - f), \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^d \times V. \\ \text{Density: } \rho(t, x) &:= \int_V f(t, x, v) dv \\ \text{We will assume } V &= B(0, v_{\max}), \ v_{\max} < +\infty. \end{split}$$

Chapman-Kolmogorov equation:

$$\partial_t f + v \cdot \nabla_x f = M(v)\rho - f + r\rho(M(v) - f), \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^d \times V.$$
(1)

Density:
$$\rho(t,x) := \int_{V} f(t,x,v) dv$$

We will assume $V = B(0, v_{\text{max}})$, $v_{\text{max}} < +\infty$.

How fast does the population spread in its environment?

First approach: Diffusion-approximation $(t, x, v) \to (\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon}, v)$, $r \to \varepsilon^2 r$

$$\varepsilon^{2} \partial_{t} f^{\varepsilon} + \varepsilon v \cdot \nabla_{x} f^{\varepsilon} = M \rho^{\varepsilon} - f^{\varepsilon} + \varepsilon^{2} r \rho^{\varepsilon} (M - f^{\varepsilon})$$
 (2)

Assume $\int_{V} v M(v) = 0$ and $\int_{V} |v|^{2} M(v) = \theta < +\infty$, then³

$$\lim_{\varepsilon \to 0} f^{\varepsilon}(t, x, v) = \rho(t, x) M(v), \tag{3}$$

where $\partial_t \rho - \theta \partial_{xx}^2 \rho = r \rho (1 - \rho)$ (Fisher-KPP).

First approach: Diffusion-approximation $(t, x, v) \to (\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon}, v), r \to \varepsilon^2 r$

$$\varepsilon^{2} \partial_{t} f^{\varepsilon} + \varepsilon v \cdot \nabla_{x} f^{\varepsilon} = M \rho^{\varepsilon} - f^{\varepsilon} + \varepsilon^{2} r \rho^{\varepsilon} (M - f^{\varepsilon})$$
 (2)

Assume $\int_V v M(v) = 0$ and $\int_V |v|^2 M(v) = \theta < +\infty$, then³

$$\lim_{\varepsilon \to 0} f^{\varepsilon}(t, x, v) = \rho(t, x) M(v), \tag{3}$$

where $\partial_t \rho - \theta \partial_{xx}^2 \rho = r \rho (1 - \rho)$ (Fisher-KPP).

From Kolmogorov-Petrovskii-Piskunov ('37):

- travelling waves for all $c \ge 2\sqrt{r\theta}$
- ullet compactly supported initial data: spreading at speed $2\sqrt{r heta}$

³Cuesta, Hittmeir, Schmeiser (2012).

This approach may underestimate the speed of propagation, due to:

- chemotactic effect (e.g *Escherichia coli*⁴)
- strongly biased random walks (e.g Rhinella marina⁵)

⁴Saragosti, Calvez et al. (2011).

⁵Perkins, Phillips, Baskett, Hastings (2013).

This approach may underestimate the speed of propagation, due to:

- chemotactic effect (e.g Escherichia coli⁴)
- strongly biased random walks (e.g Rhinella marina⁵)

data: courtesy of G. Brown, B. Phillips, R. Shine

⁴Saragosti, Calvez et al. (2011).

⁵Perkins, Phillips, Baskett, Hastings (2013).

Other approaches:

- Travelling wave solutions
- Hyperbolic limits

Looking for solution f of (1) of the form $f(t, x, v) = h(x \cdot e - ct, v)$:

$$(v \cdot e - c)\partial_1 h = M\rho_h - h + r\rho_h(M - h),$$

with $h(z,v) \to M(v)$ as $z \to -\infty$ and $h(z,v) \to 0$ as $z \to +\infty$

Looking for solution f of (1) of the form $f(t, x, v) = h(x \cdot e - ct, v)$:

$$(\mathbf{v}\cdot\mathbf{e}-\mathbf{c})\partial_1\mathbf{h}=\mathbf{M}\rho_\mathbf{h}-\mathbf{h}+r\rho_\mathbf{h}(\mathbf{M}-\mathbf{h}),$$

with $h(z,v) \to M(v)$ as $z \to -\infty$ and $h(z,v) \to 0$ as $z \to +\infty$ From numerics: 1. Front is driven by small populations (pulled-front): where $h \to 0$

$$(v \cdot e - c)\partial_1 \tilde{h} = M\rho_{\tilde{h}} - \tilde{h} + r\rho_{\tilde{h}}M.$$

(Note: supersolution)

Looking for solution f of (1) of the form $f(t, x, v) = h(x \cdot e - ct, v)$:

$$(\mathbf{v}\cdot\mathbf{e}-\mathbf{c})\partial_1\mathbf{h}=\mathbf{M}\rho_\mathbf{h}-\mathbf{h}+r\rho_\mathbf{h}(\mathbf{M}-\mathbf{h}),$$

with $h(z,v) \to M(v)$ as $z \to -\infty$ and $h(z,v) \to 0$ as $z \to +\infty$ From numerics: 1. Front is driven by small populations (pulled-front): where $h \to 0$

$$(\mathbf{v}\cdot\mathbf{e}-\mathbf{c})\partial_{1}\tilde{\mathbf{h}}=M\rho_{\tilde{\mathbf{h}}}-\tilde{\mathbf{h}}+r\rho_{\tilde{\mathbf{h}}}M.$$

(Note: supersolution)

2. Exponential decay at the edge of the front: $\tilde{h}(z,v) \simeq e^{-\lambda z} Q(v)$. Formally, we get the spectral problem: Find $(c\lambda,Q_{\lambda})$ such that

$$\lambda c Q_{\lambda} = (\lambda v \cdot e - 1) Q_{\lambda} + (r + 1) M \int_{V} Q_{\lambda}(v) dv.$$

Solving the spectral problem gives the dispersion relation

$$(r+1)\int_{V} \frac{M(v)}{1+\lambda(c-v\cdot e)} dv = 1.$$
 (4)

When, d = 1 and M > 0,

$$\lim_{c \to v_{\max-\frac{1}{\lambda}}} (r+1) \int_{V} \frac{M(v)}{1 + \lambda(c - v \cdot e)} dv = +\infty.$$

Theorem (Bouin-Calvez-Nadin 2015)

Suppose d=1 and $\inf_{v\in V}M(v)>0$. Then, for $\lambda>0$, there exists a unique $c(\lambda)>0$ such that (4) holds. Moreover, there exist travelling wave solutions of (1) for all $c\geq c^*:=\min_{\lambda>0}c(\lambda)$.

$$\lambda\mapsto c(\lambda)$$
 for $V=[-1,1]$ and $M\equiv frac{1}{2}$

Construction of travelling wave solutions for $c \geq c^*$:

- ullet There exists a solution Q_{λ} to the spectral problem
- ullet sub- and super-solution using Q_λ
- comparison principle

Non-existence of travelling wave solutions for $c < c^*$:

• relies on the fact that $c'(\lambda) = 0$

What happens when d > 1 or vanishing M?

What happens when d > 1 or vanishing M? Singularity can occur if

$$\lim_{c \to \nu_{\max-\frac{1}{\lambda}}} (r+1) \int_{V} \frac{M(\nu)}{1 + \lambda(c - \nu \cdot e)} d\nu < 1.$$

What happens when d > 1 or vanishing M? Singularity can occur if

$$\lim_{c \to v_{\max - \frac{1}{\lambda}}} (r+1) \int_V \frac{M(v)}{1 + \lambda(c - v \cdot e)} dv < 1.$$

Then, solution of the spectral problem is given $(v_{\rm max}-1/\lambda,\mu)$, where

$$\mu = \left(1 - \frac{(r+1)}{\lambda} \int_{V} \frac{M(v)}{v_{\max} - v' \cdot e} dv'\right) \delta_{v_{\max} e} + \frac{dv}{\lambda (v_{\max} - v \cdot e)}$$

What happens when d > 1 or vanishing M? Singularity can occur if

$$\lim_{c \to v_{\max-\frac{1}{\lambda}}} (r+1) \int_V \frac{M(v)}{1 + \lambda(c-v \cdot e)} dv < 1.$$

Then, solution of the spectral problem is given $(v_{\text{max}} - 1/\lambda, \mu)$, where

$$\mu = \left(1 - \frac{(r+1)}{\lambda} \int_{V} \frac{M(v)}{v_{\max} - v' \cdot e} dv'\right) \delta_{v_{\max} e} + \frac{dv}{\lambda (v_{\max} - v \cdot e)}$$

Occurs in the most simple cases: for d=2, V=D(0,1) and $M\equiv \frac{1}{\pi}$,

$$\frac{r+1}{\lambda} \int_{V} \frac{M(v)}{v_{\max} - v \cdot e} dv = \frac{r+1}{2\lambda}.$$

Result for general d and possibly vanishing M:

Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all $c \ge c^* = \min_{\lambda > 0} c(\lambda)$.

Result for general d and possibly vanishing M:

Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all $c \ge c^* = \min_{\lambda > 0} c(\lambda)$.

Existence for $c \ge c^*$: exactly as in Bouin Calvez & Nadin's paper (sub- and super-solution)

Result for general d and possibly vanishing M:

Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all $c \ge c^* = \min_{\lambda > 0} c(\lambda)$.

Existence for $c \geq c^*$: exactly as in Bouin Calvez & Nadin's paper (sub- and super-solution)

Non-existence when $c < c^*$: requires more work (Hyperbolic limits)

Study (1) in the hyperbolic scale: $(t,x,v) o (rac{t}{arepsilon},rac{x}{arepsilon},v).$

$$\partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} = \frac{1}{\varepsilon} (M \rho^{\varepsilon} - f^{\varepsilon}) + \frac{\mathbf{r}}{\varepsilon} \rho^{\varepsilon} (M - f^{\varepsilon}).$$

Study (1) in the hyperbolic scale: $(t, x, v) \rightarrow (\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, v)$.

$$\partial_t f^{\varepsilon} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f^{\varepsilon} = \frac{1}{\varepsilon} (M \rho^{\varepsilon} - f^{\varepsilon}) + \frac{\mathbf{r}}{\varepsilon} \rho^{\varepsilon} (M - f^{\varepsilon}).$$

WKB Ansatz: $\varphi^{\varepsilon}:=-arepsilon \ln(rac{f^{arepsilon}}{M})$, equivalently $f^{arepsilon}=Me^{-rac{arphi^{arepsilon}}{arepsilon}}$.

$$\partial_t \varphi^{\varepsilon} + v \cdot \nabla_x \varphi^{\varepsilon} + r = (1+r) \int_V M(v') (1 - e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv') + r \rho^{\varepsilon}$$

Study (1) in the hyperbolic scale: $(t, x, v) \rightarrow (\frac{t}{\varepsilon}, \frac{x}{\varepsilon}, v)$.

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} (M \rho^{\varepsilon} - f^{\varepsilon}) + \frac{r}{\varepsilon} \rho^{\varepsilon} (M - f^{\varepsilon}).$$

WKB Ansatz: $\varphi^{\varepsilon}:=-arepsilon \ln(rac{f^{arepsilon}}{M})$, equivalently $f^{arepsilon}=\mathit{Me}^{-rac{\varphi^{arepsilon}}{arepsilon}}.$

$$\partial_t \varphi^{\varepsilon} + v \cdot \nabla_x \varphi^{\varepsilon} + r = (1+r) \int_V M(v') (1 - e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv') + r \rho^{\varepsilon}$$

Suppose $\varphi^{\varepsilon} \to \varphi^{0}$, then (formally)

$$f^{\varepsilon} \to 0 \quad \text{on } \left\{ \varphi^0 > 0 \right\},$$

$$f^{\varepsilon} \to M$$
 on $\{\varphi^0 = 0\}$.

What is φ^0 ? Thanks to Lipschitz uniform bounds⁶ on φ^{ε} , φ^0 should be independent of v.

⁶Bouin, (2015).

What is φ^0 ? Thanks to Lipschitz uniform bounds⁶ on φ^{ε} , φ^0 should be independent of v.

Let us assume that $\varphi^{\varepsilon} = \varphi^{0} - \varepsilon \ln(Q) + \mathcal{O}(\varepsilon^{2})$. Then, formally,

$$\partial_t \varphi^0 + v \cdot \nabla_x \varphi^0 + r = (1+r) \int_V M(v') \left(1 - \frac{Q(v')}{Q(v)} \right) dv' + r e^{-\frac{\varphi^0}{\varepsilon}} \int_V Q(v') dv'$$

What is φ^0 ? Thanks to Lipschitz uniform bounds⁶ on φ^{ε} , φ^0 should be independent of v.

Let us assume that $\varphi^{\varepsilon} = \varphi^{0} - \varepsilon \ln(Q) + \mathcal{O}(\varepsilon^{2})$. Then, formally,

$$\partial_t \varphi^0 + v \cdot \nabla_x \varphi^0 + r = (1+r) \int_V M(v') \left(1 - \frac{Q(v')}{Q(v)} \right) dv' + r e^{-\frac{\varphi^0}{\varepsilon}} \int_V Q(v') dv'$$

Let $p:=
abla_{\mathsf{x}}arphi^0$ and $H=r-\partial_tarphi^0.$ On $\left\{arphi^0>0
ight\}$,

$$Q(v) = \frac{1+r}{1+H-v\cdot p} \int_V M(v')Q(v')dv',$$

Hence,

$$(1+r)\int_{V} \frac{M(v)}{1+H(p)-v\cdot p} dv = 1.$$
 (5)

Hence,

$$(1+r)\int_{V} \frac{M(v)}{1+H(p)-v\cdot p} dv = 1.$$
 (5)

Remark: $c(\lambda) = \frac{H(\lambda e)}{\lambda}$

Hence,

$$(1+r)\int_{V} \frac{M(v)}{1+H(p)-v\cdot p} dv = 1.$$
 (5)

Remark: $c(\lambda) = \frac{H(\lambda e)}{\lambda}$

Theorem (Bouin 2015)

For d=1, M>0 and for $\varphi(0,x,v)=\varphi_0(x)$, the sequence $(\varphi^{\varepsilon})_{\varepsilon}$ converges uniformly locally to φ^0 which is the viscosity solution of

$$\begin{cases} \min \left(\partial_t \varphi^0 + H(\nabla_x \varphi^0) + r, \varphi^0 \right) = 0, \\ \varphi^0(0, \cdot) = \varphi_0, \end{cases}$$

where H is implicitly defined by (5).

Hence,

$$(1+r)\int_{V} \frac{M(v)}{1+H(p)-v\cdot p} dv = 1.$$
 (6)

Theorem (Bouin NC 2017 (submitted))

For general d and M > 0 and for $\varphi(0, x, v) = \varphi_0(x)$, the sequence $(\varphi^{\varepsilon})_{\varepsilon}$ converges uniformly locally to φ^0 which is the viscosity solution of

$$\begin{cases} \min \left(\partial_t \varphi^0 + H(\nabla_x \varphi^0) + r, \varphi^0 \right) = 0, \\ \varphi^0(0, \cdot) = \varphi_0, \end{cases}$$

where H is implicitly defined by (6) when such H exists, and $H(p) = v_{\text{max}} |p| - 1$ otherwise.

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$.

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$. Assume $\varphi^0 > 0$

Let us show that
$$\frac{\partial \psi}{\partial t}(t^0, x^0) + H(\nabla_x \psi(t^0, x^0)) + r \geq 0$$
.

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$. Assume $\varphi^0 > 0$

Let us show that
$$\frac{\partial \psi}{\partial t}(t^0, x^0) + H(\nabla_x \psi(t^0, x^0)) + r \ge 0.$$

Let
$$p^0 := \nabla_x \psi(t^0, x^0)$$
.

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$. Assume $\varphi^0 > 0$

Let us show that
$$\frac{\partial \psi}{\partial t}(t^0, x^0) + H(\nabla_x \psi(t^0, x^0)) + r \ge 0.$$

Let
$$p^0 := \nabla_{\mathsf{x}} \psi(t^0, \mathsf{x}^0)$$
.
 $\psi^{\varepsilon} := \psi - \varepsilon \ln(Q)$ where

$$Q(v) = \frac{1}{1 + H(p^0) - v \cdot p^0},$$

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$. Assume $\varphi^0 > 0$

Let us show that
$$\frac{\partial \psi}{\partial t}(t^0, x^0) + H(\nabla_x \psi(t^0, x^0)) + r \ge 0.$$

Let $p^0 := \nabla_x \psi(t^0, x^0)$. $\psi^{\varepsilon} := \psi - \varepsilon \ln(Q)$ where

$$Q(v) = \frac{1}{1 + H(p^0) - v \cdot p^0},$$

$$(1+r)\int_{V} \frac{M(v)}{1+H(p^{0})-v\cdot p^{0}} dv = 1 \text{ or } H(p^{0})=v_{\max}\left|p^{0}\right|-1.$$

4□ > 4□ > 4 = > 4 = > = 90

18 / 23

 φ^0 is a viscosity super-solution : let $\psi \in C^1(\mathbb{R}_+ \times \mathbb{R}^d)$ such that $\varphi^0 - \psi$ has a global strict minimum at $(t^0, x^0) \in \mathbb{R}_+^* \times \mathbb{R}^d$. Assume $\varphi^0 > 0$

Let us show that
$$\frac{\partial \psi}{\partial t}(t^0, x^0) + H(\nabla_x \psi(t^0, x^0)) + r \ge 0.$$

Let $p^0 := \nabla_x \psi(t^0, x^0)$. $\psi^{\varepsilon} := \psi - \varepsilon \ln(Q)$ where

$$Q(v) = \frac{1}{1 + H(p^0) - v \cdot p^0},$$

$$(1+r)\int_{V} \frac{M(v)}{1+H(p^{0})-v\cdot p^{0}} dv = 1 \text{ or } H(p^{0}) = v_{\max} \left| p^{0} \right| - 1.$$

 $\varphi^{\varepsilon} - \psi^{\varepsilon}$ has a minimum at $(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かり()

1st case:

1st case: Then, $(1+r)\int_V M(v)Q(v)dv=1$ and $Q\in L^\infty(V)$

1st case: Then, $(1+r)\int_V M(v)Q(v)dv = 1$ and $Q \in L^\infty(V)$ $\implies (t^\varepsilon, x^\varepsilon) \to (t^0, x^0)$,

1st case: Then, $(1+r)\int_V M(v)Q(v)dv = 1$ and $Q \in L^\infty(V)$ $\implies (t^\varepsilon, x^\varepsilon) \to (t^0, x^0)$, $v^\varepsilon \to v^*$

1st case: Then, $(1+r) \int_V M(v)Q(v)dv = 1$ and $Q \in L^{\infty}(V)$ $\implies (t^{\varepsilon}, x^{\varepsilon}) \to (t^0, x^0), v^{\varepsilon} \to v^*$ At $(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$,

$$\frac{\partial \psi^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla_{x} \psi^{\varepsilon} + r = (1+r) \left(1 - \int_{V} M' e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv'$$

1st case: Then, $(1+r)\int_V M(v)Q(v)dv = 1$ and $Q \in L^{\infty}(V)$ $\Longrightarrow (t^{\varepsilon}, x^{\varepsilon}) \to (t^0, x^0), \ v^{\varepsilon} \to v^*$ At $(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$.

$$\frac{\partial \psi^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla_{\mathsf{X}} \psi^{\varepsilon} + r = (1+r) \left(1 - \int_{V} M' e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\
\geq (1+r) \left(1 - \int_{V} M' e^{\frac{\psi^{\varepsilon} - \psi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv'$$

1st case: Then, $(1+r)\int_V M(v)Q(v)dv = 1$ and $Q \in L^{\infty}(V)$ $\Longrightarrow (t^{\varepsilon}, x^{\varepsilon}) \to (t^0, x^0)$, $v^{\varepsilon} \to v^*$ At $(t^{\varepsilon}, x^{\varepsilon}, v^{\varepsilon})$,

$$\begin{split} \frac{\partial \psi^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla_{x} \psi^{\varepsilon} + r &= (1+r) \left(1 - \int_{V} M' e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &\geq (1+r) \left(1 - \int_{V} M' e^{\frac{\psi^{\varepsilon} - \psi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= (1+r) \left(1 - \frac{1}{Q} \int_{V} M' Q' dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \end{split}$$

1st case: Then,
$$(1+r)\int_V M(v)Q(v)dv = 1$$
 and $Q \in L^\infty(V)$ $\Longrightarrow (t^\varepsilon, x^\varepsilon) \to (t^0, x^0)$, $v^\varepsilon \to v^*$ At $(t^\varepsilon, x^\varepsilon, v^\varepsilon)$,

$$\begin{split} \frac{\partial \psi^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla_{x} \psi^{\varepsilon} + r &= (1+r) \left(1 - \int_{V} M' e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &\geq (1+r) \left(1 - \int_{V} M' e^{\frac{\psi^{\varepsilon} - \psi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= (1+r) \left(1 - \frac{1}{Q} \int_{V} M' Q' dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= (1+r) \left(1 - \frac{1}{(r+1)Q(v^{\varepsilon})} \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= -H(p^{0}) + v^{\varepsilon} \cdot p^{0} + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \end{split}$$

1st case: Then,
$$(1+r)\int_V M(v)Q(v)dv = 1$$
 and $Q \in L^\infty(V)$
 $\implies (t^\varepsilon, x^\varepsilon) \to (t^0, x^0), \ v^\varepsilon \to v^*$
At $(t^\varepsilon, x^\varepsilon, v^\varepsilon)$,

$$\begin{split} \frac{\partial \psi^{\varepsilon}}{\partial t} + v^{\varepsilon} \cdot \nabla_{x} \psi^{\varepsilon} + r &= (1+r) \left(1 - \int_{V} M' e^{\frac{\varphi^{\varepsilon} - \varphi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &\geq (1+r) \left(1 - \int_{V} M' e^{\frac{\psi^{\varepsilon} - \psi'^{\varepsilon}}{\varepsilon}} dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= (1+r) \left(1 - \frac{1}{Q} \int_{V} M' Q' dv' \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= (1+r) \left(1 - \frac{1}{(r+1)Q(v^{\varepsilon})} \right) + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \\ &= -H(p^{0}) + v^{\varepsilon} \cdot p^{0} + r \int_{V} e^{-\frac{\varphi'^{\varepsilon}}{\varepsilon}} dv' \end{split}$$

Take the limit $\varepsilon \to 0$:

$$\frac{\partial \psi}{\partial t}(t^0, x^0) + v^* \cdot \nabla_x \psi(t^0, x^0) + r \ge -H(\nabla_x \psi(t^0, x^0)) + v^* \cdot \nabla_x \psi(t^0, x^0)$$

2nd case:

2nd case: Then, $(1+r)\int_V M(v)Q(v)dv \le 1$ and $Q \notin L^\infty(V)$. Case 2.1 : $Q(v^\varepsilon)$ bounded.

2nd case: Then, $(1+r)\int_V M(v)Q(v)dv \leq 1$ and $Q \notin L^\infty(V)$. Case 2.1 : $Q(v^\varepsilon)$ bounded. Then, $(t^\varepsilon, x^\varepsilon) \to (t^0, x^0)$.

Case 2.1 : $Q(v^{\varepsilon})$ bounded. Then, $(t^{\varepsilon}, x^{\varepsilon}) \to (t^0, x^0)$.

Case 2.2 : $Q(v^{\varepsilon}) \to +\infty$.

Case 2.1 : $Q(v^{\varepsilon})$ bounded. Then, $(t^{\varepsilon}, x^{\varepsilon}) \to (t^{0}, x^{0})$.

Case 2.2 : $Q(v^{\varepsilon}) \to +\infty$. Let $Q_{\mathcal{K}} := \max(Q, \mathcal{K})$.

Case 2.1 : $Q(v^{\varepsilon})$ bounded. Then, $(t^{\varepsilon}, x^{\varepsilon}) \to (t^0, x^0)$.

Case 2.2 : $Q(v^{\varepsilon}) \to +\infty$. Let $Q_{\mathcal{K}} := \max(Q, \mathcal{K})$.

 Q_K is bounded: same procedure, then take $K \to +\infty$

Back to spreading issues:

Back to spreading issues:

Let f be a travelling wave solution: $f(t, x, v) = h(x \cdot e - ct, v)$ and $f^{\varepsilon} = h(\frac{x \cdot e - ct}{\varepsilon}, v)$.

1 On $\{\varphi^0 > 0\}$, $f^{\varepsilon} \to 0$. On $\{\varphi^0 = 0\}$, $f^{\varepsilon} \to M$

Back to spreading issues:

$$\bullet \ \, \text{On} \, \left\{ \varphi^0 > 0 \right\} \text{, } f^\varepsilon \to 0. \, \, \text{On} \, \left\{ \varphi^0 = 0 \right\} \text{, } f^\varepsilon \to M$$

Back to spreading issues:

- $\bullet \ \, \text{On} \, \left\{ \varphi^0 > 0 \right\} \text{, } f^\varepsilon \to 0. \, \, \text{On} \, \left\{ \varphi^0 = 0 \right\} \text{, } f^\varepsilon \to M$
- **③** Hopf-Lax formula: $\varphi^0(t,x) = \max\left(\min_{y \in \mathbb{R}^d} \left\{tL\left(\frac{x-y}{t}\right) + \varphi^0(0,y)\right\}, 0\right)$, where L is the Legendre transform of H: $L(p) = \sup_{q \in \mathbb{R}^d} \left\{p \cdot q H(q)\right\}$

Back to spreading issues:

- $\bullet \ \, \text{On} \, \left\{ \varphi^0 > 0 \right\} \text{, } f^\varepsilon \to 0. \, \, \text{On} \, \left\{ \varphi^0 = 0 \right\} \text{, } f^\varepsilon \to M$
- Hopf-Lax formula: $\varphi^0(t,x) = \max\left(\min_{y \in \mathbb{R}^d} \left\{tL\left(\frac{x-y}{t}\right) + \varphi^0(0,y)\right\}, 0\right)$, where L is the Legendre transform of H: $L(p) = \sup_{q \in \mathbb{R}^d} \left\{p \cdot q H(q)\right\}$

Back to spreading issues:

- $\bullet \ \, \text{On} \, \left\{ \varphi^0 > 0 \right\}, \, f^\varepsilon \to 0. \, \, \text{On} \, \left\{ \varphi^0 = 0 \right\}, \, f^\varepsilon \to M$
- **3** Hopf-Lax formula: $\varphi^0(t,x) = \max\left(\min_{y \in \mathbb{R}^d} \left\{tL\left(\frac{x-y}{t}\right) + \varphi^0(0,y)\right\}, 0\right)$, where L is the Legendre transform of H: $L(p) = \sup_{q \in \mathbb{R}^d} \left\{p \cdot q H(q)\right\}$

Related works

- r = 0: Bouin-Calvez 2012 and NC 2017
- Unbounded velocity set (superlinear spreading): Bouin-Calvez-Grenier-Nadin 2016 (submitted)
- r = 0 and force terme: NC (work in progress)
- More general reaction terms (In 1D !!!): Bouin 2016.
- genetic trait structured population: Bouin-Mirrahimi (2015)

Aknowledgement

Thank you for your attention!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639638).