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Spreading in a kinetic reaction-transport equation

Applications: Escherichia coli*, Rhinella marina® (cane toad)

Run: ——

Tumble: *‘

!Calvez, Chemotatic waves of bactria et the mesoscale (2016).
2Brown, NC, Calvez, Phillips, Soubeyrand (work in progress):
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Applications: Escherichia coli*, Rhinella marina® (cane toad)
Run

o Exponential time with mean 1

o admissible velocity set: V ¢ R
(compact)
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Spreading in a kinetic reaction-transport equation

Applications: Escherichia coli*, Rhinella marina® (cane toad)
Run

o Exponential time with mean 1

o admissible velocity set: V ¢ R
(compact)
Tumble
s o velocity redistribution:

Tomble: 06 M € LY(V) such that
' Jy vM(v)dv =0

!Calvez, Chemotatic waves of bactria et the mesoscale (2016).
2Brown, NC, Calvez, Phillips, Soubeyrand (work in progress):
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Spreading in a kinetic reaction-transport equation

Applications: Escherichia coli*, Rhinella marina® (cane toad)
Run

o Exponential time with mean 1
o admissible velocity set: V ¢ R
(compact)
Tumble
. o velocity redistribution:
rmble 6 M € LY(V) such that
' Jy vM(v)dv =0

+ Reproduction at rate r > 0 and intra-specific competition (KPP type)

!Calvez, Chemotatic waves of bactria et the mesoscale (2016).
2Brown, NC, Calvez, Phillips, Soubeyrand (work in progress):
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Spreading in a kinetic reaction-transport equation

Applications: Escherichia coli*, Rhinella marina® (cane toad)
Run

o Exponential time with mean 1

o admissible velocity set: V ¢ R
(compact)
Tumble
. o velocity redistribution:

Tomble: 06 M € LY(V) such that
' Jy vM(v)dv =0

+ Reproduction at rate r > 0 and intra-specific competition (KPP type)
+ homogeneous environment (No chemotactic effect !!1)

!Calvez, Chemotatic waves of bactria et the mesoscale (2016).
2Brown, NC, Calvez, Phillips, Soubeyrand (work in progress):
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Spreading in a kinetic reaction-transport equation

Chapman-Kolmogorov equation:

Of +v-Vif = M(V)p—f+rp(M(v)—f), (t,x,v)eRy xR x V.
(1)
Density: p(t, x) ::/ f(t,x,v)dv
14

We will assume V = B(0, Vinax), Vmax < +00.
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Spreading in a kinetic reaction-transport equation

Chapman-Kolmogorov equation:

Of +v-Vif = M(V)p—f+rp(M(v)—f), (t,x,v)eRy xR x V.
(1)
Density: p(t, x) ::/ f(t,x,v)dv
v
We will assume V = B(0, Vinax), Vmax < +00.

How fast does the population spread in its environment?
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Spreading in a kinetic reaction-transport equation

First approach: Diffusion-approximation (¢, x,v) — (gtz, V), r—ecr
20,6 4 ev - Vi fS = Mp® — £+ 2rp (M — £9) (2)
Assume [, vM(v) =0 and [, |v|> M(v) = 0 < +o0, then

lim f°(t,x,v) = p(t,x)M(v), (3)

e—0

where 0;p — 00%.p = rp(1 — p) (Fisher-KPP).

3Cuesta, Hittmeir, Schmeiser (2012).
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Spreading in a kinetic reaction-transport equation

First approach: Diffusion-approximation (t,x,v) — (%
20,6 4 ev - Vi fS = Mp® — £+ 2rp (M — £9) (2)
Assume [, vM(v) =0 and [, |v]* M(v) = 6 < +oo, then®

lim f5(¢t, x, v) = p(t,x)M(v), (3)

e—0

where 0;p — 00%.p = rp(1 — p) (Fisher-KPP).

From Kolmogorov-Petrovskii-Piskunov ('37):
o travelling waves for all ¢ > 2v/rf
@ compactly supported initial data: spreading at speed 2v/rf

3Cuesta, Hittmeir, Schmeiser (2012).
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Spreading in a kinetic reaction-transport equation

This approach may underestimate the speed of propagation, due to:
o chemotactic effect (e.g Escherichia coli*)

o strongly biased random walks (e.g Rhinella marina®)

“Saragosti, Calvez et al. (2011).
®Perkins, Phillips, Baskett, Hastings (2013).
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Spreading in a kinetic reaction-transport equation

This approach may underestimate the speed of propagation, due to:
o chemotactic effect (e.g Escherichia coli*)

o strongly biased random walks (e.g Rhinella marina®)

Toad 2 (Year 2005) Toad 9 (Year 2005)
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data: courtesy of G. Brown, B. Phillips, R. Shine

“Saragosti, Calvez et al. (2011).
®Perkins, Phillips, Baskett, Hastings (2013).
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Spreading in a kinetic reaction-transport equation

Other approaches:
@ Travelling wave solutions

@ Hyperbolic limits
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Travelling wave solutions

Looking for solution f of (1) of the form f(t,x,v) = h(x - e — ct, v):
(V -e— C)alh = Mpn,— h+ rph(M - h),

with h(z,v) — M(v) as z - —oo and h(z,v) — 0 as z — +00
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Travelling wave solutions

Looking for solution f of (1) of the form f(t,x,v) = h(x - e — ct, v):
(V -e— C)alh = Mpn,— h+ rph(M - h),

with h(z,v) — M(v) as z - —oo and h(z,v) — 0 as z — +oo From

numerics: 1. Front is driven by small populations (pulled-front): where
h—0

(V- e — c)8171 = Mpﬁ — 77+ rp;,M.

(Note: supersolution)
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Travelling wave solutions

Looking for solution f of (1) of the form f(t,x,v) = h(x - e — ct, v):
(V -e— C)alh = Mpn,— h+ rph(M - h),

with h(z,v) — M(v) as z — —oo and h(z,v) — 0 as z — +oo From
numerics: 1. Front is driven by small populations (pulled-front): where
h—0

(V’ e—c)8177: I\/Ip,~7—/N1—i—rp;,M

(Note: supersolution) y
2. Exponential decay at the edge of the front: h(z,v) ~ e 2 Q(v).
Formally, we get the spectral problem: Find (cA, Q) such that

Ac@Qy=(Av-e—1)Q\+ (r+ 1)/\/// Qx(v)dv.
v
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Travelling wave solutions

Solving the spectral problem gives the dispersion relation

M(v)

(r+1)/v1+)\(c_v‘e)dv:1. (4)

When, d =1 and M > 0,

Theorem (Bouin-Calvez-Nadin 2015)
Suppose d = 1 and in\f/ M(v) > 0. Then, for A > 0, there exists a unique
1S

c(\) > 0 such that (4) holds. Moreover, there exist travelling wave

solutions of (1) for all ¢ > c* := r/l\aig c(N).
>
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Travelling wave solutions

A c(A) for V=[-1,1 and M = ]
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Travelling wave solutions

Construction of travelling wave solutions for ¢ > ¢*:
@ There exists a solution @) to the spectral problem
@ sub- and super-solution using Q)
@ comparison principle

Non-existence of travelling wave solutions for ¢ < c¢*:
o relies on the fact that ¢’(\) =0
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Travelling wave solutions

What happens when d > 1 or vanishing M?
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Travelling wave solutions

What happens when d > 1 or vanishing M? Singularity can occur if

. M(v)
c—>\¥1m 1 (r+1)\/\/1+>\(C—V'e)dv<1'

max—
A
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Travelling wave solutions

What happens when d > 1 or vanishing M? Singularity can occur if

. M(v)
c—>\¥1m 1 (r+1)\/\/1+>\(C—V'e)dV<1'

max—
A

Then, solution of the spectral problem is given (vimax — 1/, i), where

B (r+1)/ M(v) p dv
/.l— (1 )\ y Vmax_vl,edv 5Vmaxe+A(VmaX_v.e)
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Travelling wave solutions

What happens when d > 1 or vanishing M? Singularity can occur if
M(v)

li 1 d 1.

oy ), e e

Then, solution of the spectral problem is given (vimax — 1/, i), where

B _(r+1)/ M(v) , dv

Vinax — V A(Vinax — Vv - €)

Occurs in the most simple cases: for d =2, V = D(0,1) and M = 1,

r—|—1/ M(v) dv:r+1.
A V Vimax — V- € 2\
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Travelling wave solutions

045 -
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Travelling wave solutions

Result for general d and possibly vanishing M:
Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all
c > c* =minc(N).
A>0
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Travelling wave solutions

Result for general d and possibly vanishing M:
Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all
c > c* =minc(N).
A>0

Existence for ¢ > c¢*: exactly as in Bouin Calvez & Nadin's paper (sub- and
super-solution)
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Travelling wave solutions

Result for general d and possibly vanishing M:
Theorem (Bouin, NC, submitted (2017))

Under previous assumptions, there exist travelling wave solutions for all
c > c* =minc(N).
A>0

Existence for ¢ > c¢*: exactly as in Bouin Calvez & Nadin's paper (sub- and
super-solution)
Non-existence when ¢ < c¢*: requires more work (Hyperbolic limits)
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Hyperbolic limits

Study (1) in the hyperbolic scale: (t,x,v) = (£,%,v).

Ouf + v - Uy ff = %(Mpa — )+ gpa(/w —f9).
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Hyperbolic limits

Study (1) in the hyperbolic scale: (t,x,v) = (£,%,v).
OF* v Vo ff = S(Mp" — £) + o (M — F7),
5 5

WKB Ansatz: ¢ = —5ln(F—A;), equivalently f¢ = Me‘ﬁi—s.

/.
wE='c

0" +v-Vep® +r= (1—|—r)/ M(V')(1—e dv') + rp°
v
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Hyperbolic limits

Study (1) in the hyperbolic scale: (t,x,v) = (£,%,v).

Ouf + v - Uy ff = %(Mpa — )+ gpa(/w —f9).

WKB Ansatz: ¢ = —5ln(F—A;), equivalently ¢ = Me‘ﬁi—s.

8t<p€+v'vx90€+r:(1+r)/ MOV —e = dv')+ rp°
%
Suppose ¢° — ¢°, then (formally)

f¢—=0 on {<p0>0},

fc—= M on {ch:O}.
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Hyperbolic limits

What is ©°? Thanks to Lipschitz uniform bounds® on ¢, ¢©° should be
independent of v.

®Bouin, (2015).
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Hyperbolic limits

What is ©°? Thanks to Lipschitz uniform bounds® on ¢, ¢©° should be
independent of v.

Let us assume that ¢ = % — cln(Q) + O(e?). Then, formally,

e ® V-V, 4r = 1+r)/ (1 - C()Q((‘\///))> dv'—i—re_%0 /\/ Q(v)dv'

®Bouin, (2015).
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Hyperbolic limits

What is ©°? Thanks to Lipschitz uniform bounds® on ¢, ¢©° should be
independent of v.

Let us assume that ¢ = % — cln(Q) + O(e?). Then, formally,

e ® V-V, 4r = 1+r)/ (1 - C()Q((‘\///))> dv'—i—re_%0 /\/ Q(v)dv'

Let p:=Vp® and H =r — 9;¢°. On {¢° > 0},

1+r
Qv) = 1+H—-v- p/M(V

®Bouin, (2015).
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Hyperbolic limits

Hence,

(1+r)/v1+ M) gy 1. (5)
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Hyperbolic limits

Hence,

(1+r)/v1+ M) gy 1. (5)

Remark: ¢(\) = H(ie)
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Hyperbolic limits

Hence,

M(v) _
(1—|—r)/v1+H(p)_V'pdv—1. (5)

Remark: ¢(\) = @

Theorem (Bouin 2015)

Ford =1, M > 0 and for (0, x, v) = @o(x), the sequence (¢°).
converges uniformly locally to ©° which is the viscosity solution of

min (8t<p0 + H(Vx®) + r, goo) =0,
900(07 ) = o,

where H is implicitly defined by (5).
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Hyperbolic limits

Hence,

M(v) _
(1+r)/v1+H(p)_v'pdv_1. (6)

Theorem (Bouin NC 2017 (submitted))

For general d and M > 0 and for (0, x, v) = ¢o(x), the sequence (¢°).
converges uniformly locally to ©° which is the viscosity solution of

min (8t<p0 + H(Vx®) +r, goo) =0,
SOO(Oa ) = ©o,

where H is implicitly defined by (6) when such H exists, and
H(p) = Vmax |p| — 1 otherwise.
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢

has a global strict minimum at (%, x%) € R%. x RY.
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢

has a global strict minimum at (%, x%) € R%. x RY.
Assume 0 > 0

Let us show that ?,;f(to,xo) + H(V, (1%, x%) + r > 0.
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢

has a global strict minimum at (%, x%) € R%. x RY.
Assume 0 > 0

Let us show that ?,;f(to,xo) + H(V, (1%, x%) + r > 0.

Let p° := V,(t%, x0).
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢

has a global strict minimum at (%, x%) € R%. x RY.
Assume 0 > 0

Let us show that ?,;f(to,xo) + H(V, (1%, x%) + r > 0.

Let p° := V,(t%, x0).
YP° =1 — eln(Q) where
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢

has a global strict minimum at (%, x%) € R%. x RY.
Assume 0 > 0

Let us show that ?,;f(to,xo) + H(V, (1%, x%) + r > 0.

Let p° := V,(t%, x0).
YP° =1 — eln(Q) where
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¢0 is a viscosity super-solution : let ¢» € C1(R; x R9) such that ¢ — ¢
has a global strict minimum at (%, x%) € R%. x RY.

Assume 0 > 0

Let us show that ?,;f(to,xo) + H(V, (1%, x%) + r > 0.

Let p° := V,(t%, x0).

YP° =1 — eln(Q) where

_ 1

T L4 H(p%) — v pO

Q(v)

(t+1) /v 1+ H(I,\:O()Vz V- podV =1 or H(p®) = Vinax |p0} 1

©% — ) has a minimum at (t°, x%, v°).
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1st case:

Nils Caillerie (Georgetown University) Spreading in a kinetic reaction-transport « September 20th 2017 19 / 23



1st case: Then, r) [y M(v)Q(v)dv =1and Q € L>(V)
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x%) — (1%, x9),
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*

At (t°, x5, ve),

o*
ot

+ve -V +r = (1+47r) <1—/M’e¢ = dv’)—i—r/ e T dv
v v
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*

At (t°, x5, ve),
(1+7r) (1 —/ M e =" dv’) + r/ e T dv
v v

oyY*
> (1+r) (1 —/ /\/I'ews?blE dv') + r/ e_wsidv’
v v

ot + vVt 4 r
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*
At (t°, x5, ve),

8’(/] + VE . vwa + r — (1 + r) (1 _/ M,ews—sap/fi dV/> + r/ e—%lsdvl
ot v v

> (1+r) (1—/ Me =" dv') +r/ e T dv
v v

= (1+7r) (1—1/ M'Q/dv/>+r/ ey
QJv v
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*
At (t°, x5, ve),

8’(/] + VE . vwa + r — (1 + r) (1 _/ M,ews—sap/fi dV/> + r/ e—%lsdvl
ot v v

> (1+7r) (1 /I\/I' SWE )—l—r/ e
v
= (1+7r) —/M'Q’dv>+r/ e dv/
v

1 _ec
- 00 (s
= —H(p°)+v6-p°+r/ e T
4
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Ist case: Then, (1+7r) [, M(v)Q(v)dv =1 and Q € L*(V)
= (t5,x°) = (t%x%), v¢ — v*
At (t°, x5, ve),

8’(/] + VE . vwa + r — (1 + r) (1 _/ M,ews—sap/fi dV/> + r/ e—%lsdvl
ot v v

> (1+7r) (1 /I\/I' SWE >+r/ e_%lgdv’
v
= (1+7r) —/M'Q’dv>+r/ e dv/
v

le

1 _ec
- 00 (s
= —H(p°)+v6-p°+r/ e T
4

Take the limit e — 0 ;

— (1%, x%) + v* - Vo (%, x0) + r > —H(V, b (%, x°)) + v* - V,ap(t%, x°)
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2nd case:

Nils Caillerie (Georgetown University) Spreading in a kinetic reaction-transport « September 20th 2017 20 / 23



2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
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2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
Case 2.1 : Q(v®) bounded.
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2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
Case 2.1 : Q(v®) bounded. Then, (t°,x%) — (&% x°).
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2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
Case 2.1 : Q(v®) bounded. Then, (t°,x%) — (&% x°).
Case 2.2 : Q(v®) — +o0.

Nils Caillerie (Georgetown University) Spreading in a kinetic reaction-transport « September 20th 2017 20 / 23



2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
Case 2.1 : Q(v®) bounded. Then, (t°,x%) — (&% x°).
Case 2.2 : Q(v®) — +o00. Let Qx := max(Q, K).
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2nd case: Then, (1+4r) [, M(v)Q(v)dv < 1 and Q ¢ L>(V).
Case 2.1 : Q(v®) bounded. Then, (t°,x%) — (&% x°).

Case 2.2 : Q(v®) — +o00. Let Qx := max(Q, K).

Rk is bounded: same procedure, then take K — +oo
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Hyperbolic limits

Back to spreading issues:

Let f be a travelling wave solution: f(t,x,v) = h(x-e— ct,v) and
f'E — h(X'e—Ct V)
e 7

Nils Caillerie (Georgetown University) Spreading in a kinetic reaction-transport «

September 20th 2017 21 /23



Hyperbolic limits

Back to spreading issues:

Let f be a travelling wave solution: f(t,x,v) = h(x-e— ct,v) and
f'E — h(X'e—Ct V)
e 7

Q@ On {® >0}, f©—0.0n{e =0}, fF=M
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Hyperbolic limits

Back to spreading issues:

Let f be a travelling wave solution: f(t,x,v) = h(x-e— ct,v) and
f'E — h(X'e—Ct V)
e 7

Q@ On {® >0}, f©—0.0n{e =0}, fF=M

0 0 solves min (8tg0° + H(Vx®) + r, <p0) =0
©°(0,0) =0, ¢°0,x) = +oo0 if x # 0.

Nils Caillerie (Georgetown University) Spreading in a kinetic reaction-transport «

September 20th 2017



Hyperbolic limits

Back to spreading issues:

Let f be a travelling wave solution: f(t,x,v) = h(x-e— ct,v) and
f'E — h(X'e—Ct V)
e 7

Q@ On {® >0}, f©—0.0n{e =0}, fF=M
0 ¥ solves min (8tg0° + H(Vx®) + r, @0) =0
(P 0 _ 0 _ .
©°(0,0) =0, ¢°(0,x) =400 if x #0.
© Hopf-Lax formula: ¢%(t,x) = max (;rel]g}! {tL (*3%) + ¢°(0,y)},0),

where L is the Legendre transform of H: L(p) = sup {p-q— H(q)}
gcRd
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f'E — h(X'e—Ct V)
e 7

Q@ On {® >0}, f©—0.0n{e =0}, fF=M
0 ¥ solves min (8tg0° + H(Vx®) + r, @0) =0
(P 0 _ 0 _ .
©°(0,0) =0, ¢°(0,x) =400 if x #0.
© Hopf-Lax formula: ¢%(t,x) = max (;rel]g}! {tL (*3%) + ¢°(0,y)},0),

where L is the Legendre transform of H: L(p) = sup {p-q— H(q)}
gcRd
Q@ ¢"=0= L(%) §Oandx~e§@t:c()\)tfor)\>0.
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Hyperbolic limits

Back to spreading issues:
Let f be a travelling wave solution: f(t,x,v) = h(x-e— ct,v) and
fE — h(X'e—Ct V)

e 7

Q@ On {® >0}, f©—0.0n{e =0}, fF=M
min (9¢¢® + H(Vx®) +r,¢%) =0

@ ¢ solves
¥ v {¢0(0, 0) =0, ¢°%0,x)=+o0if x#0.

© Hopf-Lax formula: ¢%(t,x) = max <mir}! {tL (*3%) 4+ °(0,y)} ,0>,
yeR

where L is the Legendre transform of H: L(p) = sup {p-q— H(q)}
geRd
Q WV=0—= L(%) §Oandx~e§@t:c()\)tfor)\>0.
@ Since h(z,v) - M(v) and h(z,v) — 0, we have ¢ > c*.

z—+00
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Related works

r = 0: Bouin-Calvez 2012 and NC 2017

Unbounded velocity set (superlinear spreading):
Bouin-Calvez-Grenier-Nadin 2016 (submitted)

r =0 and force terme: NC (work in progress)

More general reaction terms (In 1D !!1): Bouin 2016.

genetic trait structured population: Bouin-Mirrahimi (2015)
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